Литровая мощность и методы форсирования двигателей

Литровая мощность и методы форсирования двигателей

Литровой мощностью называют номинальную эффективную мощность, снимаемую с единицы рабочего объема двигателя:

Nл = Ne/iVh = pen/(30t)

Чем выше литровая мощность, тем меньше рабочий объем и соответственно меньшие габариты и массу имеет двигатель при одинаковой номинальной мощности.

По литровой мощности оценивают степень форсированности. Двигатели, имеющие высокие значения Nл называют форсированными.

Комплекс технических мероприятий, способствующих повышению литровой мощности, называют форсированием двигателя.

Возможные способы форсирования двигателей следуют из выражения; Nл увеличивается с увеличением номинальной частоты вращения n, среднего эффективного давления ре или при применении двухтактного рабочего процесса.

Увеличение литровой мощности посредством повышения n широко используется в карбюраторных двигателях, для с временных моделей которых n достигает 6500 мин-1 и выше.

Дизели грузовых автомобилей, как правило, имеют номинальную частоту вращения, не превышающую 2600 мин-1.

По этой причине литровая мощность дизелей без наддува находится в пределах от 12 до 15 кВт/л и существенно уступает аналогичному показателю карбюраторных двигателей, имеющих Nл = 20…50 кВт/л.

Однако в настоящее время в ряде конструкций дизелей легковых автомобилей трудности форсирования их по частоте вращения удается преодолеть. Появляется все большее количество дизелей с номинальной частотой вращения n = 4500…5500 мин-1 и литровой мощностью до 20 кВт/л.

Для дизелей форсирование по частоте вращения менее характерно, чем для двигателей карбюраторных, для которых этот способ повышения литровой мощности является одним из основных.

Как следует из анализа зависимости, при переходе с четырехтактного рабочего цикла на двухтактный литровая мощность должна увеличиваться в два раза.

В действительности же при этом Nл увеличивается всего лишь в 1,5… 1,7 раза вследствие использования лишь части рабочего объема на процессы газообмена и снижения качества очистки и наполнения цилиндров, а также в результате дополнительных затрат энергии на привод продувочного насоса.

Большая (на 50…70%) литровая мощность — существенное достоинство двухтактного двигателя. Однако недоиспользование части рабочего объема цилиндра для получения индикаторной работы приводит к тому, что они имеют заметно более низкие энергоэкономические показатели, чем аналогичные четырехтактные двигатели.

К недостаткам двухтактных ДВС следует отнести сравнительно большую тепловую напряженность элементов цилиндропоршневой группы из-за более кратковременного протекания процессов газообмена и, следовательно, меньшего теплоотвода от деталей, формирующих камеру сгорания, а также большего теплоподвода к ним в единицу времени, что объясняется вдвое более частым следованием процессов сгорания.

Большим недостатком двухтактных карбюраторных двигателей является потеря части горючей смеси в период продувки цилиндра, что значительно снижает их экономичность.

Особое место в ряду мероприятий, направленных на повышение литровой мощности, занимает форсирование двигателей по среднему эффективному давлению рс.

Однако существенного увеличения Nл путем повышения рс удается достигнуть лишь при увеличении тепловой нагруженности рабочего цикла из-за подвода к рабочему телу большего количества теплоты.

Необходимая для этого подача в цилиндр большего количества топлива (возрастание цикловой подачи qп) требует для его полного сжигания и большего количества окислителя. На практике это реализуется путем увеличения количества свежего заряда, нагнетаемого в цилиндр двигателя под давлением.

Этот способ носит название наддува двигателя. При этом ре возрастает практически пропорционально увеличению плотности свежего заряда.

На рисунке изображена схема двигателя с наддувом и механическим приводом компрессора от коленчатого вала.

Литровая мощность и методы форсирования двигателей, Двигатель автомобиля

Рис. Схема наддува двигателя с приводным компрессором

Одним из недостатков такой системы наддува является существенное снижение экономичности двигателя, обусловленное необходимостью затрат энергии на привод компрессора.

Литровая мощность и методы форсирования двигателей, Двигатель автомобиля

Рис. Схема турбонаддува

Наибольшее распространение в практике современного двигателестроения получил газотурбинный наддув, схема которого приведена на рисунке выше.

Здесь для привода центробежного компрессора 1 используется энергия ОГ, срабатываемая в газовой турбине 2, конструктивно объединенной с компрессором в единый агрегат, который называют турбокомпрессором (ТК).

Поскольку при газотурбинном наддуве отсутствует механическая связь агрегата наддува с коленчатым валом двигателя, применение ТК заметно ухудшает тяговые характеристики и приемистость двигателя. Это связано с инерционностью системы роторов ТК, а также с уменьшением энергии отработавших газов при малых нагрузках, в связи с чем, особенно в начале разгона, не обеспечивается подача в цилиндр нужного количества свежего заряда. Для преодоления этих недостатков нередко возникает необходимость использования комбинированного наддува. Система комбинированного наддува выполняется в различных конструктивных вариантах и обычно представляет собой определенные комбинации наддува с приводным компрессором и газотурбинного наддува.

Для повышения плотности свежего заряда, подаваемого в цилиндры двигателя, в ряде случаев используются колебательные явления в системах газообмена (пульсации РТ в системе впуска и выпуска), являющиеся результатом цикличности следования процессов газообмена в цилиндре.

Если, например, задать впускному патрубку такие конструктивные параметры (в основном длину и площадь проходного сечения), чтобы перед закрытием впускного клапана около него была волна сжатия, то масса поступающего в цилиндр заряда увеличивается.

Аналогичный эффект можно получить, «настроив» выпускной трубопровод так, чтобы при открытом выпускном клапане вблизи него была волна разрежения. В результате этого улучшится очистка цилиндров и в него поступит большее количество свежего заряда.

При правильном выборе геометрических параметров систем газообмена в отдельных случаях с помощью динамического наддува становится возможным увеличить эффективную мощность двигателя на 15…25%.

При использовании наддува увеличивается механическая и тепловая напряженность элементов, формирующих камеру сгорания, что является одним из основных факторов, ограничивающих возможное увеличение плотности свежего заряда, поступающего в цилиндр. Поэтому при конструировании двигателей с наддувом и выборе величины давления на выходе из компрессора р’х необходимо учитывать возможные последствия роста механических и тепловых нагрузок на его элементы.

По величине создаваемого на входе в цилиндр дизеля давления рк (или степени повышения давления Пк=pк/p0) различают наддув низкий Пк1,5…2,0 и высокий Пк >2,0. При этом эффективная мощность двигателя увеличивается соответственно на 20…30, 40…50 и более 50%.

Применение наддува в двигателях с искровым зажиганием требует принятия специальных мер по предотвращению нарушения процесса сгорания, называемого детонацией. Это обстоятельство, а также более высокая тепловая напряженность лопаток турбины из-за большей температуры ОГ существенно усложняют практические возможности использования наддува в двигателях данного типа.

Похожие новости

  • Выплаты алиментов после 18 лет
  • Здоровый образ жизни и культура питания: два кита, на которых держится жизнь
  • Семейные отношения — это
  • Потрясающие безе из микроволновки всего лишь за 3 минуты
  • Как избавится от болезни Осгута Шляттера используя народные методы

  • Литровая мощность и методы форсирования двигателей

    Литровая мощность и методы форсирования двигателей

    Литровая мощность и методы форсирования двигателей

    Литровая мощность и методы форсирования двигателей

    Литровая мощность и методы форсирования двигателей

    Литровая мощность и методы форсирования двигателей